THE REAL COMPUTER ARCHITECTURE — PRELIMINARY DESCRIPTION 3

1. Introduction

1.1 Overview

The primary objective of ReAl architecture design is to utilize the inherent parallelism in information
processing operations to the highest possible degree, in other words, within the limits that result from
the application problem to be programmed, on the one hand, and the respectively available hardware,
on the other hand, and to provide interfaces between hardware and software that ensure arbitrary
interchangeability of hardware and software.

The ReAl principles of operation are intended to provide methods for utilizing information processing
means so that any number of them can be addressed freely by a program or can be freely configured
to hardware structures that carry out the desired information processing operations.

The architecture is based on a set or pool of resources which can execute certain operations with data
of certain types. This constitutes basically an algebraic structure®. Hence the name ReAl = Resource-
Algebra.

The principal hypothesis: There will always be enough . . .

» Hardware does not matter.
e Memory Capacity does not matter.
e Hardware requirements for machine program generation do not matter.

The basic paradigm:

If we want to do something, we will fetch an appropriate piece of hardware out of a magazine (like
a hammer to drive in a nail or a wrench to fasten a nut) and use it to perform the information
processing task to be executed. If we want to add two numbers together, we take an adder, if we want
to compare two values, we take a comparator and so on. A piece of hardware which has done its duty
will be returned to the magazine. We will take as many tools as we need, for example, 50 hammers
if 50 nails are to be driven in, or 50 adders if 50 pairs of numbers are to be added together.

ReAl principles at a glance:

The ReAl architecture is based on the fact that any program requires always a hardware in order to be
executed; essentially, the program is transformed into information transports, combinational
operations, and state transitions, in other words, into the flow of information through a register transfer
structure. In order to implement a certain programming intention, suitable resources will be selected
out of a resource pool. These resources will be fed with parameters. Then the processing operations
will be initiated. Results will be stored in memory or written to 1/0O devices; intermediate results will
be forwarded to other resources. Further steps of parameter passing, initiation and assignment will be
carried out until the processing task has been completed. Resources which are no longer needed will
be returned to the resource pool. These processing steps are controlled by stored instructions

1): Similar paradigms have been used occasionally over more than one decade for performance analysis
and abstract modeling of architectural principles ([6], [9]). Here this basic approach will be applied to
instruction set design.

THE REAL COMPUTER ARCHITECTURE — PRELIMINARY DESCRIPTION 4

(operators). So-called platform resources are provided to fetch the instructions from memory.
Additional instructions establish and disconnect, respectively, connections (concatenations) between
resources. Once a concatenation has been established, the steps of parameter passing, initiation of
operations and assignment of results will be performed automatically; there is no need to control each
single processing step by separate instructions.

The ReAl design rationale in ten points:

10.

Starting with the programming intention, an appropriate register transfer structure is configured
ad hoc, basically from elementary processing devices that are referred to as resources. A
resource in this respect is to be understood, for example, as a conventional arithmetic logic unit
(ALU) butalso as complex special circuitry. The general model of a resource is a hardware unit
that performs certain information processing operations (from given data at the inputs new data
at the outputs will be computed).

There are sufficient resources available at any time. This is initially a theoretical assumption
(hypothesis of (nearly) unlimited (transfinite) resource pool). Based on this principle, it is
possible to request any number of resources (for example, several hundred multiplication units)
and to utilize the inherent parallelism to the fullest. Machine programs are typically generated
(for example, by means of compilers) as if any number of resources were available. In practice
however, each pool of resources is limited in size. Hence the programs are to be adapted to the
limits of a given pool of resources. This can be done during compile time or during runtime
(emulation, virtualization (virtual resources can be provided similarly to pages in a conventional
virtual memory)).

Resources can be implemented by means of software or hardware; programs and hardware
resources are handled the same way.

The basic model of a resource is always a piece of hardware with input registers, combinational
circuitry and output registers (register-transfer model).

A processing operation (program sequence) will be implemented by the utilization of resources
during the course of time (resources are fetched from the resource pool as needed and returned
when not longer in use).

With respect to an application problem, the universal computer is considered to be only a
makeshift solution. The true optimum solution would be a dedicated hardware whose machine
cycles are spent exclusively to compute the desired final results. In such a machine, neither
clock cycles and memory bandwidth nor power would be wasted for fetching instructions,
loading and storing intermediate values, for function calls and the like. We want to build true
universal machines whose characteristics come as close to this ideal as possible.

The instructions (operators) describe only the basic processing steps, but not the concrete
operations to be performed (like addition or multiplication).

More complex resources can be configured recursively from elementary resources.
Instructions (operators) that control the processing steps in ReAl machines can be generated,
transported or modified by applying the ReAl principles of operation recursively. For
example, special resource configurations could be built ad hoc for purposes of machine program
generation (like compiling).

It does not matter where the resources are located and how they are implemented. It is even
possible to request and utilize resources via the Internet (for example, special processors).

THE REAL COMPUTER ARCHITECTURE — PRELIMINARY DESCRIPTION 5

Essentially, ReAl programming means to turn program development into some kind of hardware
designh— a ReAl program can be thought of as an assembly instruction for building a special hardware
configuration that can carry out the respective processing task, initially as a thought experiment
independent of the actual practical feasibility. This virtual hardware can be configured, modified, and
released dynamically during run time. It is decided case by case, which configuration is actually to be
implemented in hardware and which is not. If a resource is not directly available as hardware, it could
be built from more elementary resources or its function could be emulated with other resources based
on the ReAl principles of operation (recursion) or with conventional machine programs.

The ReAl architecture can be implemented:

. With conventional general-purpose computers.

. With modified general-purpose processors (modified instruction decoder, modified register file,
different microprograms etc.).

. With special processors designed from scratch according to the ReAl principles of operation.

. With programmable integrated circuits (FPGAS).

The individual resource can be:

. A circuitry with fixed function.

. A circuitry with selectable functions.

. A program-controlled circuitry (controlled by conventional machine instructions or by
microinstructions).

. An appropriate memory area, supplemented by program control operators (emulation).

. An appropriate memory area, supplemented by a description of a circuitry that can perform the
respective information processing operations (for example, in the form of netlists or Boolean
equations). This description can be used to simulate the circuitry. Alternatively, the circuitry in
guestion can be generated on the fly by programming of appropriate FPGAs.

Instructions and operators
The ReAl architecture terminology makes a difference between instructions and operators.

Operators are the basic (in a general sense, logical) control structures according to the ReAl principles
of operation (we speak of s-operators, y-operators and so on (details in chapter 2)).

Instructions are the control structures of the hardware. There are different possibilities for
implementing instructions:

. They are machine-specific encoded ReAl operators (1:1-correspondence).

. They are formatted similar to conventional machine instructions or microinstructions.
Typically, one ReAl operator corresponds to a sequence of such instructions.

. The operator functions are emulated with or compiled into sequences of conventional machine
instructions or microinstructions.

1): Preferably a resource configuration that corresponds to the data flow diagram of the respective
application problem.

THE REAL COMPUTER ARCHITECTURE — PRELIMINARY DESCRIPTION 6

Some ReAl advantages:

. The inherent parallelism in the programs to be executed can be exploited according to the
hardware being actually available.

. Essentially, an arbitrary number of resources can be addressed (no limitation of the number of
resources, as is the case, for example, in so-called VLIW architectures).

. Hardware means for conflict detection, instruction retry, retirement and the like are not required.

. The allocation of resources can be program-controlled in detail; it is possible to configure for
each processing task ad hoc a type of virtual special machine and to release it again if no longer
needed.

. Once such structures are configured, the overhead during run time is significantly reduced in
comparison to conventional machines (no build-up and release of stack frames, no storing and
rereading of intermediate values).

. Memory means and operation units can be connected directly with one another (in comparison
to the register files of the conventional high-performance processors, fewer access paths are
required and the address decoding is simplified).

. The operation units can be embedded in memory arrays (resource cells, active memory arrays)
so that very short access paths are provided. This simplification of the hardware provides for
increasing the clock frequency, saving on pipeline stages (shortening of the latency of operation
execution), and arranging on a given silicon real estate a larger number of operation units (or
more powerful operation units).

. The perspective possibilities that are provided by the semiconductor technology (for example,
a few hundred million transistors on an integrated circuit) can be utilized to a large degree.
Since the inherent parallelism is detected directly from the programmer*s intentions (in statu
nascendi), it is possible to optionally utilize even hundreds of processing units at the same time
in order to accelerate the execution of the individual programs.

. Depending on the cost and performance goals and depending on the state of technology,
hardware and software can be interchanged with one another (for example, a subroutine can be
exchanged for a special processing unit and vice versa). Corresponding programs are therefore
invariant with regard to technological development; they can utilize any progress of circuit
integration without problems.

. Systems can be realized on programmable integrated circuits that represent basically arbitrary
combinations of hardware and software.

. Auxiliary functions, for example, debugging, system administration, data encryption and the
like, that require conventionally additional software routines (loss of speed) or special hardware
(cost) can be organically embedded into the resources (the additional cost is minimal because,
as a result of the direct connections, more possibilities for circuit optimization are present and
the system efficiency is not affected). Moreover, additional resources can be taken from the
general resource pool in order to configure corresponding devices as needed (when the
respective function, for example, for debugging, is no longer required, the resources in question
are again available for general use).

. In contrast to conventional operating instructions, the selection of the operations (s-operator)
is separate from the initiation of the operation (y-operator). Each resource knows thus from the
beginning for which purpose the transferred parameters are to be used. This can be utilized
optionally for optimizing the hardware. The initiation encoding (y-operator) is typically shorter
than the selection encoding (s-operator). This is advantageous (reduction of code size) when
the same operations are to be initiated again and again or when many operations are to be

THE REAL COMPUTER ARCHITECTURE — PRELIMINARY DESCRIPTION 7

initiated at once. For a given instruction length, more operations can be initiated at once in
comparison to conventional principles. For example, one of the best-known architectures for
high-performance processors has instruction words of a length of 128 bits that contain three
instructions. Accordingly, up to three operations can be initiated at once. A modification of this
format according to the ReAl principles could provide, for example, an operation code of 8 bits.
Iny-operators, the remaining 120 bits are therefore available for initiating functions. Depending
on the configuration of the instruction format, the following can be initiated, for example:

* When each resource has assigned 1 bit: up to 120 operations.

* When the resource address is 6 bits: up to 20 operations.
* When the resource address is 12 bits: up to 10 operations.

1.2 Typical Areas of Application

The ReAl principles of operation can be exploited as follows:

1. For theoretical considerations.

2. Forintermediate languages and the like in conventional programming.
3. For building systems based on programmable logic circuits.

4. For developing advanced processor and system architectures.

1. Theory

Conventional programs are essentially represented as character strings. Based on the analysis of the
program text alone, the behavior of the program can be predicted only insufficiently; instead, the
program must be executed in order to recognize its behavior. On the other hand, on the basis of the
ReAl principles it is possible to convert the programming intention into a virtual hardware
configuration whose operations can be dissolved down to the individual Boolean equations. To such
virtual hardware, tools and methods of graph theory, automata theory, Boolean algebra and so on
could be applied, facilitating, for example, correctness proofs and investigations of complexity
problems.

2. Programming®

Programming in high level languages

It is well established to convert the source code first into a virtual machine code. Such virtual
machines are usually designed as stack machines. Stack machines operate however inherently
sequentially (one operation at a time). In contrast, virtual machines designed according to the ReAl
principle of operation have primarily the following advantages:

. All potential parallelism inherent in the application program could be detected (at least
theoretically), including opportunities for utilization of SIMD and VLIW instructions.

. Fewer housekeeping operations will be required, for example, when calling functions and when
moving parameters (in other words, less overhead).

1): Here we will illustrate how ReAl principles could be used for intermediate (descriptive or
interpretative) languages and the like (to be applied in the context of conventional architectures), not
the programming of genuine ReAl machines.

THE REAL COMPUTER ARCHITECTURE — PRELIMINARY DESCRIPTION 8

A typical development process:

. The programming intention is written down in a suitable programming language.

. In a first pass, a ReAl compiler generates an intermediate code for a virtual ReAl machine.

. Then the program could be run by means of emulating the ReAl machine operations.

. Alternatively, in a second pass the ReAl machine code could be compiled into the native
machine code of the target architecture.

Program development based on graphic design tools

The application programs are developed with design tools that support the expression of the design
intentions by graphic means, for example, based on block diagrams, flowcharts, and state machines.
Such design systems generate typically an intermediate code in a conventional programming language
(C, C++ etc.) that is subsequently converted into a program for the corresponding target machine by
means of a conventional compiler. However, conventional general-purpose programming languages
are not especially suitable for many application problems in question. Programs generated according
to the ReAl principles describe basically hardware structures. Therefore, such programs can be
derived obviously from block diagrams, schematics, state diagrams and so on. Instead of the
intermediate code (for example, in C) ReAl code is provided that selects an appropriate configuration
of resources”.

Application areas with high requirements in regard to functional safety

When based on ReAl principles, the processor (or microcontroller) interprets a virtual circuit structure
that, in contrast to a conventional program (which must be run in order to verify its correct behavior),
is accessible to examination and verification also in the static state. Accordingly, microprocessors,
microcontrollers and the like can also be used in cases where in the past, for safety reasons, the use
of programmable devices has been excluded.

The conventional way: A hardware solution is developed, tested with regard to compliance to the
respective regulations, and finally built.

The alternative: The hardware configuration is described by means of ReAl operators or instructions.
This description is emulated by the processor or controller. A correctly written emulator can never
crash, no matter which error is present in the system to be interpreted. Therefore, the software based
on the ReAl principles has the same functional safety as a true hardware implementation.

Debugging

The fact that in the end a virtual hardware structure is present can also be used for program debugging.
All methods (and tricks) that have been found useful for troubleshooting in hardware can be applied
(dividing the entire “circuit” into blocks that can be tested individually, setting up test configurations
with test data generation and test result analysis, injection of test patterns into suspected circuitry and
the like). As in the case of troubleshooting in hardware where optionally signal generators, logic
analyzers etc. are used, in such a system corresponding testing aids can be combined as needed from
the already present resource pool.

1): To support such application areas, the resource pool could be optimized appropriately (for example, to
support Boolean equations and automata tables).

THE REAL COMPUTER ARCHITECTURE — PRELIMINARY DESCRIPTION 9

Program migration

A program based on ReAl principles can describe the programming intention in all essential details
— if needed, down to the individual Boolean equation. Therefore, it is to be expected that such
programs can be converted without problems into machine code of future systems.

Meta-language

All programs, no matter in which language they are formulated, are in the end control instructions for
information processing operations, transports and state transitions in register transfer structures. A
sufficiently equipped resource pool (with regard to data types, operations and so on) is suitable
therefore, in combination with the ReAl operators, as a general-purpose compiler target, or (from a
theoretical viewpoint) as a general-purpose meta-language in which all expressions of the different
programming languages can be reproduced.

3. Systems based on programmable logic circuits

The ReAl principles allow for describing complex designs independent of their implementation. An
instruction set that is based on the ReAl principles of operation is a unified machine language that can
describe hardware as well as software. Hence it will be possible to exchange hardware and software
with one another.

Conventional programmable integrated circuits (FPGAS) contain basically only two types of
programmable devices:

. General-purpose function blocks, macrocells etc. that carry out only comparatively simple
combinational operations and can store only a few bits in flip-flops (up to four flip-flops per cell
are typical). This can be referred to as "fine granularity."

. Hardwired function blocks or even complete processors (which are typically optimized down
to the transistor level). This corresponds to “coarse granularity."

It takes a lot of silicon area to implement a particular design with function blocks of fine granularity
("soft" implementation). Comparing hard (optimized down to the transistor) and soft implementations
of the same design, the soft implementation typically requires more than ten times as many transistors
than the hard one. Also the speed is correspondingly reduced (ratio of clock frequency typically 4:1
to more than 10:1).

Hard implementations however are expensive (development cost) and not as flexible. It is not easily
possible to connect them arbitrarily to other circuits. Instead, these circuits have to be adapted to the
particular interfaces (for example, bus systems) of the "hard" function block. This requires typically
additional circuitry (and development effort).

According to the ReAl principles of operation, programmable integrated circuits can be provided that
have a medium granularity — the "fat" hard processor is essentially dissolved into its components that
are made available as individual modules. Also, the connecting structures can be optimized with
regard to typical information transports. Based on the available resources (operation units, addressing
units and the like) general-purpose computers or special circuitry can be configured as needed and the
configurations can be changed dynamically while in operation.

THE REAL COMPUTER ARCHITECTURE — PRELIMINARY DESCRIPTION 10

4. Processors and system architectures

The ReAl principles of operation allow for the decomposition of the processor structures into the
individual functional units and the seamless transition between hardware and software. If the resource
pool has been standardized appropriately, the fixed (monolithic) proprietary processor architectures,
operating systems, and application programs can be replaced by resources of arbitrary origin
(distributed system architecture). System functions as well as application functions are provided by
resources that, as needed, are implemented as hardware or software?.

This interchangeability is facilitated especially by the principle, that the operators or instructions
describe only the selection, activation etc. of the resources while the actual functions are hidden in the
interior of the respective resource.

Prior attempts to implement such concepts are based on higher formal languages or virtual machines
that can be emulated comparatively easily. When utilizing higher formal languages, the migration
from one platform to another or the change between hardware and software always requires new
compilation. For this purpose, an appropriate compiler is required. Because the internal interfaces (for
example, the parameter transfer) are not uniformly standardized, there are always compatibility
problems. When a virtual machine is used, such difficulties can be avoided to a large degree.
Conventional virtual machines however have been developed primarily under the premise of effective
compilation of software (example: P-code (Pascal), Forth machines, JVM (Java Virtual Machine)).
They are therefore hardly suitable as general-purpose interfaces for complex high-performance
hardware (parallel processing, application-specific processing units etc.). By exploiting the ReAl
principles of operation, the inherent parallelism can be detected directly based on the programming
intention. In this way, it is possible to utilize simultaneously even hundreds of operation units.
Memory and processing circuitry can be connected directly with one another. In the extreme, the
individual (hardware) resource is a memory array with a built-in operation unit (resource cell).

1.3 ReAl Architecture and the State of the Art

1.3.1 Overview

The operation of computers relies on the combination of circuitry (hardware) and stored programs
(software). Decisive for this interaction is the interface between hardware and software. This interface
(in other words, the architecture) can be characterized by three sets: the set of elementary data
structures, the set of machine instructions and the set of the general principles of operation. These
architectural features have been developed based on experience. The first computers have been
invented as automated calculating machines. Therefore, it was self-evident to implement the basic
arithmetic operations. An instruction typically initiates such an arithmetic operation, an auxiliary
activity (data transport, input, output and so on), or an activity of program sequence control
(branching, subroutine call and the like). The individual architectures differ primarily in the auxiliary
functions (like operand addressing). Programs for conventional computer architectures are sequential
by their nature; the programming model is based on instructions being executed one after another?.

1): In order to make the desire for of unlimited interchangeability come true (beyond the promises of Ada,
Javaand the like), resource descriptions and universal instruction codes (for example, byte codes) have
to be standardized comprehensively.

2): There are numerous sources concerning computer architecture. As the space is limited, we can give only
a few introductory hints [15].

THE REAL COMPUTER ARCHITECTURE — PRELIMINARY DESCRIPTION 11

It is always desirable to increase the processing performance. The execution time of a particular
operation however cannot be reduced arbitrarily. The limits are set mainly by the propagation delays
of the hardware. In order to increase the processing performance beyond these limits, computers have
been equipped with additional operation units. Those units can be operated simultaneously (parallel
to one another). This leads to the problem how to make best use of such hardware configurations.
In some fields of application it is apparent that a plurality of information processing operations can
be performed simultaneously (parallel processing). In many cases, however, the possibility of parallel
processing is not easily recognizable. Most programs are not written to take into account parallel
processing, and the conventional programming languages are based on the sequential execution of
instructions. Not all commands or instructions, however, must be performed sequentially. Example:

Ist instruction:. X =A+B
2nd instruction; Y:=C+D

When two operation units are available, both instructions can be executed at the same time. The fact
that instructions and instruction sequences in conventional programs occasionally can be executed
simultaneously (parallel to one another) is referred to as inherent parallelism. There are different
approaches to detect the inherent parallelism and take advantage of it. The decisive prerequisite is the
availability of several operation units (superscalarity). Basically, there are two principles.

1. Conventional instruction set

The individual instruction causes a single operation to be executed, respectively, and initiates thus the
utilization of a single operation unit. The inherent parallelism is detected during run time. For this
purpose, several sequential instructions are fetched and decoded at the same time. Since parallel
processing has not been considered when writing the program, conflicts may arise. Example:

Ist instruction:. X =A+B
2nd instruction; Y =C+ X

When both instructions are executed simultaneously, the second instruction uses the prior value of X
and therefore delivers awrong result. Such conflicts are detected by special circuitry and are resolved
by repeating the instruction in question.

In addition to the operation units, circuitry for recognizing the opportunities for parallel execution and
for detecting and resolving of conflicts are required. Such circuitry is rather complex. Therefore, only
a few instructions can be checked with regard to the possibility of parallel execution, and the number
of operation units cannot be increased arbitrarily. Typically, two to four operation units are provided
for each data type (binary numbers, floating point numbers and the like). A significantly greater
number of operation units would require an unbearable complexity detecting the possible conflicts.

The shortcomings of the established machines are caused primarily by still relying on basically
conventional general-purpose computer architectures. Hardware that attempts to recognize the inherent
parallelism in conventional programs at run time can take into consideration only a few sequential
instructions, respectively. Moreover, conflict situations are to be detected and optionally to be
resolved by repeated execution of instructions. For this purpose, comparatively complex circuitry is
required. The operation units are utilized only insufficiently because, for the purpose of conflict
resolution, they must be passed optionally several times (instruction retry).

THE REAL COMPUTER ARCHITECTURE — PRELIMINARY DESCRIPTION 12

2. Instruction sets with provisions to control parallel operations

When the parallel operation is controlled explicitly by the instructions, these disadvantages are
eliminated. There are some variants, for example, extremely long instructions with control fields for
all operation units (VLIW = very long instruction word) or instructions that contain information
wether subsequent instructions can be performed in parallel or not. Circuitry to detect the inherent
parallelism is not required. The number of operation units supported in this way is however limited
(instructions cannot become arbitrarily long) and fixed in the respective architecture (for example, to
3, 4, or 8 operation units). The actual performance depends on the compiler that must detect the
inherent parallelism based on the source code and must decide how the available resources are to be
used best. The migration to systems that are designed only minimally differently requires a new
compilation (a system that comprises, for example, eight operation units can be utilized only
insufficiently by means of machine instructions that support only three operation units).

1.3.2 Superscalar Architectures

The multiple operation units in superscalar machines are controlled by appropriately formatted
instructions (explicit instruction level parallelism) or by a speculation mechanism. This mechanism
tries to emulate some kind of dataflow machine, executing instructions according to the availability
of the data to be processed. Fig. 1.1 and 1.2 show block diagrams of typical superscalar processors.

Operation \
Machine \ Parallel Micro- gg;?g::;ré _v| Units Y Instruction
Instructions :SS‘W;“O“ Translation |instructions Bufier Retirement
ecodaer ‘Q /‘

Fig. 1.1 Principal structure of a superscalar processor.

The principal operation of such processors can be summarized as follows:

1. Several conventional machine instructions are read and decoded at the same time.

2. They are translated to microinstructions.

3. The microinstructions are buffered in an associative control memory (reordering buffer) and
supplied to the operation units.

4. A microinstruction is executed as soon as an appropriate operation unit is available.

5. The operations are executed without considering the original instruction sequence.

6. If conflicts are detected, the corresponding microinstructions are repeated as often as needed for
the conflicts to disappear.

7. Finally, the results of instructions that have been terminated without conflicts are stored in such
a way that they appear to the programmer as if they had been computed by serial execution
according to the original instruction sequence (instruction retirement).

This type of parallel processing is essentially a trial and error approach. Inherent parallelism can be
detected only within short instruction sequences. Since in case of a conflict the execution of the
instruction must be repeated, the processing performance will drop. Moreover, because of the
controlling and monitoring overhead, typically only elementary instructions will be supported this
way. Instructions with complex functions are often executed serially. The complexity of the control
circuitry is comparatively high.

THE REAL COMPUTER ARCHITECTURE — PRELIMINARY DESCRIPTION

System Bus
4‘_

L2-Cache

'

1 o
! !
|2 | Instruction Cache fe—s 18
! 17 19
Instruction Decoder
3 4 5
16
1 L1 1 1
:] I
6 | !
15 Data
7 Cache
18 (L1)
9
1 ‘
Operation Units
10 |[11 |12 [[13 [[14 |L
i 1

| Internal Bus Systems

1 - system bus controller; 2 - instruction fetch unit; 3, 4 - instruction decoder for simple
instructions; 5 - instruction decoder for complex instructions; 6 - register allocation unit; 7 -
instruction retirement; 8 - microinstructions reordering buffer; 9 - microinstructions scheduler;
10, 11 - floating point operation units; 12, 13 - integer operation units; 14 - memory access
controller; 15 - architecture registers; 16 - conventional microprogram control (controls
everything that is too complex to be executed in parallel; 17- branch target buffer; 18 -

architecture instruction counter; 19 - memory access buffer.

Fig. 1.2 A superscalar processor in more detail (source: Intel).

Superscalar and ReAl Architectures

13

What a current superscalar machine does implicitly and speculatively at a comparatively small scale
(e.g., with 4 to 16 operation units), a ReAl machine could do explicitly and in a deterministic way at
a scale only limited by semiconductor technology. Table 1.1 illustrates characteristic features of
conventional superscalar and ReAl machines in contrast.

Fig. 1.3 shows how a conventional superscalar processor could be turned into a ReAl machine. The
operation units, the cache memories, the buffers as well as the bus interfaces remain. The instruction
decoder is significantly more straightforward. The general-purpose register file could be extended
significantly in comparison to conventional processors (for example, to 64 to 256 registers). The
operation units could be directly coupled to the general-purpose registers. Since the complicated
control circuitry (positions 3to 9 in Fig. 1.2) is not needed, optionally the set of operations could be
expanded or additional operation units could be provided.

THE REAL COMPUTER ARCHITECTURE — PRELIMINARY DESCRIPTION

Conventional superscalar machines ReAl machines
* More than one operation unit (e.g., 2 to 16) * More than one processing resource
» Complex pipelined circuitry « Each resource is a comparatively less
complex, non-pipelined circuitry

» Provides partial data flow operation by « Provides partial data flow operation based on
speculation a deterministic description (c-operators),

» Complex hardware to detect inherent parallelism | « Inherent parallelism detected during compile
between instructions time; no dedicated circuitry required

» Complex hardware to detect conflicts and hazards
during execution

» Rigid processor structures (the application * The ensemble of resources could be morphed
problem must match sufficiently well, or there to (virtual) application-specific machines
will be inefficiencies)

» Conventional instruction set. Downwardly « New instruction set architecture; describing
compatible instruction set architectures can be parallelism and dataflow operation in detail
supported (cf. the processors of the personal
computers)

Table 1.1 Conventional superscalar vs. ReAl machines.

Syster:r: Bus L2-Cache
;
K e
!]
| 2 | Instruction Cache |-—- 18 r
1 17 19
Instruction Decoder

General Purpose Data
Register File Cache
(L1)

Operation Units
10 1" 12 13 14

. :

[Internal Bus Systems

Fig. 1.3 The superscalar processor of fig. 1.2 turned into a ReAl machine. For positions 1 to 19
see fig. 1.2.

THE REAL COMPUTER ARCHITECTURE — PRELIMINARY DESCRIPTION 15

A rough estimate:

Conventional high-performance processors (for example, similar to fig. 1.2) consist of about 10 to 50
million transistors. An integrated circuit with 200 million transistors can accomodate four superscalar
processor cores, each comprising approximately 50 million transistors ([14]). However, the
performance capability of this arrangement can become effective only when at least four programs are
to be executed at the same time; the individual program cannot be accelerated in itself. The operation
units of one of the processor cores correspond roughly to eight 64-bit arithmetic/logic units (the
differences between integer and floating point units etc. being neglected here). These 4 cores « 8
operation units correspond to 32 resources. The instruction fetch and execution control hardware is
to be replaced by ReAl platform circuitry. Cache memories, control circuits, bus systems etc. are
maintained (same size, but modified structure). Some more resources could be located on the silicon
area otherwise occupied by auxiliary and control circuitry (pipelining, detection of hazards and the
like). Therefore, one can reasonably expect a processor IC containing approximately 48 to 64 high-
performance processing resources. According to the requirements of the applications to be executed,
this ensemble of resources could be morphed into graphic engines, database engines etc. under control
of ReAl operators.

Optimization of high-performance processors vs. ReAl
Some activities to develop optimized high-performance processors correspond to important goals of
the ReAl approach (Table 1.2, Fig. 13).

Recommendations to improve computational Within ReAl machines, these recommendations
throughput in conventional processors ([10]) will be more than fulfilled . . .

* Reduce the amount of load/store cycles (more « If resources can be set up according to the data

than 30% of the instructions executed in a flow (e.g., of an innermost loop), no load/store
RISC architecture are load and store cycles (concerning intermediate results, local
instructions) variables etc.) will be needed at all. Even the

instruction fetch cycles are avoided, as the
control codes have been loaded into the
resources.

» Streamline repetitive operations (perform time- [¢ This will pose no problem if enough processing

critical operations on multiple data resources are available (cf. Fig. 13)
simultaneously)
» Maximize utilization of pipeline resources « Since the processing resources are not part of a

rigid hardware pipeline but can be
interconnected freely, some utilization
problems and hazards are avoided which are
typical of pipelined hardware

* Minimize branch latency e Can be achieved by appropriate platform
design. Even multiway branches can be
supported

Table 1.2 Optimization of conventional high-performance processors vs. ReAl.

THE REAL COMPUTER ARCHITECTURE — PRELIMINARY DESCRIPTION 16

uint32_t
sad8_c(const uint8_t * const cur,
const uint8_t * const ref,

const uint32_t stride) Application Data from Memory
{
uint32_t sad = 0; ‘L * * VL
u!nSZ_t i . (ptr_cur[0] - ptr_ref[0]); (ptr_cur{1] - ptr_ref[1]); (ptr_cur[2] - ptr_ref[2]); (ptr_cur(3] - ptr_ref[3]);
uint8_t const *ptr_cur = cur, a : " 5 : = :
wint8 _t const *ptr_ref = ref: (ptr_cur[4] - ptr_ref{4]); (ptr_cur{5] - ptr_ref[5]); (ptr_cur{6] - ptr_refl6]); (ptr_cur([7] - ptr_ref[7]);

for(j=0,j<8, j++){ I_L rI I_L rI

sad += abs(ptr_cur{0] - ptr_ref{0]);
sad += abs(ptr_cur{1] - ptr_ref[1]);
sad += abs(ptr_cur{2] - ptr_ref[2]);
sad += abs(ptr_cur{3] - ptr_ref[3]);

sad += abs(ptr_cur{4] - plr_reﬁ4]):
sad += abs(ptr_cur{5] - ptr_ref{5]); Iﬁ #I
sad += abs(pir_cur[8] - ptr_ref{6]);

sad += abs(ptr_cur{7] - ptr_ref[7]);

Add absolute values Add absolute values

Add and accumulate

ptr_cur += stride;
ptr_ref += stride;

} Final Result

(SAD)
return sad;

Fig. 1.4 An algorithm to calculate the sum of absolute differences (SAD). Left: The original C-code
(source: xvid codec). Right: an appropriate ReAl configuration of processing resources.

The example in Fig. 1.4 has been used in [10] to illustrate optimization problems of conventional
processor architectures. Obviously, the SAD value could be calculated within a loop. But, to gain
some speed, this (innermost) loop has been unrolled. 16 operand values are to be fetched and 32
operations have to be executed. Each operation requires at least one instruction, which is to be fetched,
too. These operations can easily be mapped onto an inverted tree of concatenated processing
resources. Some kind of pipelining will occur automatically as consequence of the concatenation
mechanism. Once the resource configuration has been set up, there is no need to fetch more
instructions, as all control codes reside within the resources. Therefore, the memory access paths and
the total memory bandwith will be available for moving the application data.

1.3.3 Multiprocessor systems

Multiprocessor systems have a long history. The current semiconductor technology is able to provide
more than one processor on one integrated circuit. There are complete systems optimized thoroughly
for certain kinds of application and multiple processor cores on FPGA circuits which can be
supplemented by application-specific hardware (for examples, see [3] and [14]). The particular
processors are typically high-performance cores (for example, 32-bit or 64-bit RISC Machines). These
processors are powerful, but complex and inflexible in themselves. To cope with inherently sequential
as well as with easily parallelizable algorithms, it has been proposed to provide a powerful (and hence
complicated) processor for inherently sequential problems surrounded by a few less complex
processors for problems which are suited for parallel execution ([4]).

Obviously, multiprocessor systems are advantageous if the application problem matches the system
structure. However, there are some basic drawbacks which apply to all systems built of multiple
independent processors:

. Each processor needs its own instruction fetch mechanism, instruction cache, instruction
sequencer etc.

. The synchronization between processors is difficult, requiring special hardware means (like test-
and-set instructions and cache coherency provisions) and causing overhead during runtime.

THE REAL COMPUTER ARCHITECTURE — PRELIMINARY DESCRIPTION 17

. If the particular processor is too small, and if the amount of non-parallelizable code cannot be
neglected, then Amdahl’s Law will be effective.

. Some processors will be unused if the processor arrangement does not match the structure or
the size of the application problem (e.g., 16 processors but only 7 threads to be executed in
parallel).

Toa large extent, the ReAl approach has been stimulated by the desire to circumvent these drawbacks.
The key points can be summarized as follows:

. To break down the complete processor into its functional units (in other words: to provide less
complicated processing resources, but more of them).

. To provide for sufficiently efficient, optimized interconnections.

. To develop principles of operation and instruction set architectures which can cope with such
hardware configurations.

1.3.4 Spatial Computing

It is obviously a buzzword for more than one research topic, covering semiconductor technology,
processing units and interconnects on integrated circuits ([2]) and the like as well as large networks
of processing resources of different granularity ([1]). What spatial computing research has in common
with the ReAl proposal is that it relies on an abundance of resources. Spatial computing ideas have
emerged from semiconductor technologies and large-scale networking, whereas the starting point of
the ReAl proposal has been mathematical abstraction and instruction set design, deliberately omitting
semiconductor and networking problems. Obviously, there may be some convergence:

. Results of networking and semiconductor research (e.g., new interconnection circuitry as
described in [2]) could be used to implement ReAl machines.

. ReAl principles could be used to develop instruction set architectures (including some kind of
universal bytecode (cf. JVM)) for programming of spatial computing systems.

1.3.5 Specialized Hardware

The desired information processing operations are not carried out with sequences of comparatively
simple functions encoded in the instructions. Instead, the hardware is designed specifically in regard
to the desired functions. Such devices are preferably implemented with programmable logic circuits
(field programmable gate arrays FPGAS). In order to facilitate the developmental work, various
functional units (up to complete processors) are made available that can be embedded into one’s own
designs (IP cores; IP = intellectual property) There are two kinds of such IP cores:

. Soft IP cores: They are delivered as circuit descriptions to be incorporated into the own
development flow and are implemented with the means of programmable circuits (function
blocks, macrocells etc.).

. Hard IP cores: They are present on the circuit in a rigid form (not programmable). Typically,
such designs will be optimized down to the transistor level.

Specialized hardware systemss are comparatively expensive and the development task is complex.
It is therefore obvious to search for compromise solutions and to solve the respective application
problem by combining of hardware and software. Typical principles are:

THE REAL COMPUTER ARCHITECTURE — PRELIMINARY DESCRIPTION 18

. A conventional general-purpose computer (typically a microprocessor provided as a hard IP
core) interacts with specialized hardware.

. Only functions that are really time-critical are supported by specialized hardware.

. If no extreme performance requirements are to be satisfied, specialized hardware is not used.

When a general-purpose processor is supplemented by special hardware, two different development
processes must be mastered (hardware/software co-design). Conventionally, such problems have been
solved by using two languages (programming language plus hardware description language). More
recent approaches try to combine hardware and software development more closely ([5]):

. The general-purpose processor and the specialized hardware reside both on the same FPGA.

. In order to make best use of the silicon, the general-purpose computer can be modified, too
(this concerns, for example, the size of cache memories and register files, the arrangement of
floating point units and so on).

. Special hardware that is attached to the general-purpose processor is addressed by special
instructions that are added to the instruction set of the processor.

. There is only one programming language for describing the application algorithms. The
functional decomposition (between software and specialized hardware) is done automatically.

. The design of the specialized hardware is derived automatically from ordinary high-level code
(for example, the C language serves as hardware design language, too; there is no need to resort
to VHDL, Verilog and the like).

But such systems on silicon are still highly specialized systems. Their structure can be changed only
during development time. Typically, genuine application-specific circuitry can be implemented only
the soft way (whose drawbacks have been discussed above). This is also true for highly flexible
processor structures.

In contrast, ReAl systems don't know a rigid division between general-purpose processors and
specialized circuitry. On a ReAl programmable integrated circuit, application-specific machines can
be created on the fly by exploiting all of the resources according to the particular needs of the
application problem.

Conventional systems on silicon

ReAl systems on silicon

Hardware structure to be determined during
development time

Hard IP cores cannot be modified

If a hardware unit is to be laid out or modified
depending on the application problem, it must
be implemented the soft way

The general-purpose processor can only be
modified, but not changed in its basic
instruction set architecture)

Hardware structure can be changed during run
time

Typical ReAl resources are hard IP cores of
intermediate complexity (considerably more
than a macrocell, but much smaller than a
general-purpose processor)

If necessary, general-purpose processing
hardware can be created on the fly according to
the requirements of the application

Table 1.3 Conventional vs. ReAl systems on silicon.

THE REAL COMPUTER ARCHITECTURE — PRELIMINARY DESCRIPTION 19

1.4 Basic Resources

In this section, the meaning of the term resource will be explained in more detail. Moreover, it will
be demonstrated how such resources can be used in order to carry out elementary tasks of information
processing.

Fig. 1.5 illustrates the term of register transfer level (RTL). Principally, each digital information
processing system consists of memory means (flip-flops, registers, memory cells) and combinational
networks. Its function is determined completely by the memory means RG and by the Boolean
equations that describe the combinational networks CN. In the following, the resources can therefore
be illustrated by simple register transfer level (RTL) diagrams. RTL diagrams and Boolean equations
that describe the functional units of conventional computers can be found in numerous textbooks,
hardware manuals and the like [16].

vy - \'r # ¥ +
[rG |RG [RG
|RG

<@é\‘

Fig. 1.5 Principal illustration of the register transfer level (RTL). RG = memory means (registers),
CN = combinational networks.

Fig. 1.6 shows register transfer level diagrams of simple resources, comprising registers and
combinational networks. For example, elementary resources (fig. 1.6a) generate a single result (X)
from two operators (A, B):

X:=AOPB or X:=O0P(ADb)

Most of the processing instructions of typical general-purpose computers correspond to this scheme
(the differences lie primarily in the way how the operands are delivered and how the result is
assigned). The well-known arithmetic logic units (ALUS) can be viewed as examples of such
elementary resources.

General-purpose computers know only a few elementary data types, for example, integers, floating
point numbers, characters, strings and so on. The operation unit usually processes only data of some
particular types (for example, integers or floating point numbers). In case of elementary operations,
the operands and the results have the same format.

THE REAL COMPUTER ARCHITECTURE — PRELIMINARY DESCRIPTION 20

ReAl resources have no such limitations. A resource can create from an arbitrary number of operands
any number of results, wherein the operands and the results may belong to any data type or data format
(fig. 1.6b, ¢). There is also no limitation to elementary data types. The data types can be as complex
as desired (bit and character strings, arrays, heterogeneous structures (records) and the like).

b)
LA 1 [8 1 [e 1]
A ——"
\&ot /
v v X := OP1 (A B, C)
[x] [Y Jr=op2(aB.C)
c)
| | | | | |]
v v v v v v
\ \ V V V V /

Fig. 1.6 Some basic resources.

The typical general-purpose computer executes one instruction at a time. Hence a single processing
resource is sufficient. It is self-evident to increase the performance by providing several processing
resources. Fig. 1.7 shows two examples. When the resources are independent (fig. 1.7a), utmost
flexibility is ensured. However, there remains the problem of supplying them with operands
(parameters) and to remove the results. Fig. 1.7b illustrates one solution: The resources are to be
connected according to the most frequent data flow, so that the results can immediately become
operands of other resources (concatenation).

a) b)

| | | | |
—
|—l

=
=l

"/
—

| | || 1!/
— —
| | || N
— —

Fig. 1.7 Independent (a) and concatenated (b) resources.

THE REAL COMPUTER ARCHITECTURE — PRELIMINARY DESCRIPTION 21

Fig. 1.8 illustrates an alternative configuration. The resources are connected to a random access
memory (RAM). Program execution is to be divided into sequences of three steps:

1. The operands are loaded into the resources.
2. The operands are processed within the resources (simultaneously in all of them).
3. The results are brought back into the memory.

RAM

Fig. 1.8 Independent resources attached to a random access memory (RAM).

Fig. 1.9 illustrates that the resources can be implemented with hardware as well as with software.
Memory areas with memory cells for the parameters and the results (fig. 1.9b) correspond to the
operand and result registers of the hardware (fig. 1.9a); programs that carry out the respective
information processing operations (fig. 1.9c) correspond to the combinational networks.

a)[A]

| B
|_¢' F‘ A 4 Y Y
\% Vv Vv
OP1 OoP2

I | 2 |
b) A
B
X C) Program d) Netlist of a circuitry
- OP1 (emulates OP1) performing OP1
Working
(Scratch)
Area
c
D
E Program Boolean equations
Y (emulates OP2) describing how
2 OP2 OP2 derives the
results Y, Z from
Working operands C,D, E
(Scratch)
Area

Fig. 1.9 Two resources (OP1, OP2) implemented in different ways.

THE REAL COMPUTER ARCHITECTURE — PRELIMINARY DESCRIPTION 22

Another alternative is to store the description of a circuitry that can perform the respective information
processing operations (fig. 1.9d). Such descriptions can be, for example, provided as net lists or as
Boolean equations. Based on this, it is possible to generate the respective hardware (for example, on
a programmable integrated circuit) or to emulate its function (functional hardware simulation).

