
THE REAL COMPUTER ARCHITECTURE – PRELIMINARY DESCRIPTION 23

2. The ReAl Computational Model

2.1 Operators and Parameters

The ReAl architecture supports the exploitation of an arbitrary number of arbitrary resources. Fig. 2.1
illustrates how a single resource is be used according to the ReAl computational model. In the
example, the following steps are executed:

1. Parameters (operands) are fetched from memory and passed to the resource.
2. The operation is executed (by activating the hardware or by invoking an appropriate software

routine (emulation)).
3. The result is stored in the memory (in other words, assigned to the corresponding variable).

Fig. 2.1 How a single resource is used – the basic computational model.

When only one resource is considered, especially one that has only a few parameters and executes
only well-known basic operations, there is virtually no difference to conventional computer
architectures (fig. 2.2). It is merely the question whether the consecutive processing steps are
controlled implicitly by the control unit (instruction sequencer) or explicitly by appropriate encoded
commands. In this respect the ReAl architecture bears some resemblance to the principles of vertical
microprogram control. The peculiar ReAl benefits however will come into effect when more than one
resource is exploited and when the ReAl principles of operation are applied to the program as a whole.

Concatenation
Resources can be combined to complex arrangements. Such a configuration corresponds to the data
flow diagram of the respective processing operations (fig. 2.3). The ReAl computational model
implies provisions for connecting resources according to data flow diagrams and for disconnecting
again these connections. In the following, such connections will be referred to as concatenations.

THE REAL COMPUTER ARCHITECTURE – PRELIMINARY DESCRIPTION 24

Fig. 2.2 For comparison: instruction execution in a conventional processor.

Fig. 2.3 A basic example of resources combined according to a data flow diagram: three
resources have been concatenated to calculate (A + B) • (C + D).

The basic ReAl Operators
In a ReAl machine, the processing steps are controlled by stored instructions. The abstract (machine-
independent) instructions are referred to as operators. There are at least eight basic types:

1. Select resources: s-operator.
2. Establish concatenations between resources: c-operator.
3. Feed resources with operands from memory (parameter passing): p-operator.
4. Initiate the information processing operations: y-operator (yield).
5. Move data between resources: l-operator (link).
6. Assign results (to variables in memory) : a-operator.
7. Disconnect concatenations: d-operator.
8. Return resources to the resource pool: r-operator.

THE REAL COMPUTER ARCHITECTURE – PRELIMINARY DESCRIPTION 25

Some basic variants:

• The concatenation is not supported at all. The operator types 2 and 7 are obsolete. The parameter
transport is to be done exclusively with p-operators, l-operators and a-operators, the operation
initiation exclusively with y-operators.

• Not all resources support an unlimited concatenation. When this is the case, arbitrary data flow
schemes cannot be supported. In some cases, the concatenation provisions are not usable.

• The input concatenation is not supported. The concatenation can only be used for moving
parameters between resources, but not for initiation of operations. Hence all operations are to be
initiated by y-operators.

• The input concatenation is supported. In this case, it is possible to automatically initiate the
respective operations without a y-operator. Such a resource begins – if set up appropriately –
with the execution of the operation when all operands are valid, no matter in which way they are
supplied (p-operator, l-operator or concatenation).

Parameter passing
The data with which the resources work are generally referred to as “parameters”. Input parameters
are also referred to as operands; output parameters are referred to as results. Thre are three types of
parameters:

• Inputs (operands; type IN).
• Outputs (results; type OUT).
• Combined inputs and outputs (type INOUT).

Parameters are passed in general by value. If this is not easily possible, additional resources (for
example, addresing respources) must be provided in order to fetch and move the values.

Additional operators
In practice, additional operations are to be initiated and additional information is to be passed to, for
example, for supporting compilers, for system administration and the like. In order to be able to
provide such supporting functions in a way consistent with the basic principles of operation, some
supplemental operators are introduced:

1. Hints: h-operator.
2. Meta-language support: m-operator.
3. Administrative and auxiliary functions: u-operator (utility).

2.2 Denotation of ReAl Program Operations

ReAl programs are essentially sequences of operators. ReAl program operations can be represented
as follows:

• Colloquial (for example, in a cookbook-like fashion ("take a multiplier and concatenate it to a
comparator" and so on). This requires no special conventions but is copious and not always free
of ambiguities.

THE REAL COMPUTER ARCHITECTURE – PRELIMINARY DESCRIPTION 26

• ReAl text code. Text codes are concise formalized denotations based on simple character strings.
They are used when a machine-independent and human-readable representation is required.
Typical examples are documentation, debugging, program development and compiling.

• ReAl byte code. Byte codes are variable-length binary encodings. A ReAl program in byte code
is essentially a string of bytes. Such codes are used when a machine-independent, but compact
representation is required. Typical examples are compiling and emulation.

• ReAl machine codes. Machine codes can be laid out according to fixed-length or variable-length
formats. Simple fixed-length formats resemble the well-known RISC instructions (an opcode
followed by some parameter fields containing ordinal numbers or addresses). Alternate formats
may contain many fields to control many resources in parallel, resembling VLIW instructions or
horizontal microinstructions.

In the following descriptions a simple text code will be employed1). The basic syntax:

• Designators (of resources, resource types and parameters) may be ordinal numbers or symbolic
names. The primary designation is by consecutive ordinal numbers (1st, 2nd etc. resource, 1st, 2nd

etc. parameter and so on). To those ordinal numbers, symbolic names can be assigned.

• Parameters are enumerated consecutively: first the inputs, then the inputs and outputs, then the
outputs (fig. 2.4). Each parameter is designated by its ordinal number.

• Resources are enumerated consecutively. Each resource is designated by its ordinal number. The
ordinal numbers are assigned according to the sequence of s-operators. The assigned ordinal
numbers remain valid even when intermediately resources with lower numbers have been returned
(r-operator).

• Assignment of a symbolic name to an ordinal number (more details see below):

ordinal number : symbolic name.

Fig. 2.4 Resources with enumerated parameters.

• Spaces can be inserted or omitted as needed. A line feed does not matter.

• The assignment symbol is := (the colon designates the destination side).

1): This text code is essentially intended for concisely describing architectural principles and as an
intermediate (internal) formalized language during program development and compiling. Therefore,
user-friendliness is not that important. The text code is not intended to be a new programming language
for application programmers.

THE REAL COMPUTER ARCHITECTURE – PRELIMINARY DESCRIPTION 27

• Parameter passing is denoted by => (the arrow symbolizes the direction).

• The comment symbol is -- (refer to Ada and VHDL).

• Each operator is designated by a particular mnemonic character:

operator_ name = s | c | p | y | l | a | d | r | h | m.

• An operator within a program: operator_name (argument_list).

• A parameter (operand or result) of a particular resource will be represented as follows:

resource . parameter.

• Designation of variants of the operators: by additional abbrevaitions that are separated by an
underscore (for example, s_a; p_imm or u_rs2).

Assignment of symbolic names:

• Resource types: Symbolic names are usually predefined in the resource type table or in the
reference manual of the particular ReAl machine. Those names can be overloaded by appropriate
u-operators:

Assign resource type name: u_tn.

u_tn (ordinal number : symbolic name).

Rename resource type: u_trn.

u_trn (previous symbolic name : new symbolic name).

• Parameters: Symbolic names are usually predefined in the resource type table or in the reference
manual of the particular ReAl machine. Those names can be overloaded by appropriate u-
operators:

Assign parameter name: u_pn.

u_pn (ordinal number : symbolic name).

Rename parameter: u_rrn.

u_prn (previous symbolic name : new symbolic name).

THE REAL COMPUTER ARCHITECTURE – PRELIMINARY DESCRIPTION 28

• Resources: Symbolic names can be assigned during invocation of the desired resource type (s-
operator) or by appropriate u-operators:

Assignment in the parameter string of the s-operator: resource type : symbolic name.

Assign resource name: u_rn.

u_rn (ordinal number : symbolic name).
Rename resource: u_rrn.

u_rrn (previous symbolic name : new symbolic name).

2.3 Basic Operators

1. Select resources: s-operator

s (list of resource type identifiers)

s (1st resource type, 2nd resource type an so on)

The s-operator is used to request resources of certain types out of the resource pool.

The effect of a s-operator depends on the requested resources as well as of the kind of the underlying
hardware:

• An appropriate hardware resource (in other words, a function unit (like an ALU)) is reserved,
initialized and assigned.

• Appropriate memory areas are reserved, initialized, and assigned. Optionally, the respectively
required control information is loaded (programs, microprograms, net lists, Boolean equations and
the like).

• The requested resource is built from other resources (recursion).
• An appropriate hardware structure is generated, for example, by programming cells and

connections on a programmable integrated circuit.

Initializing a resource means to set up literals and initial values, to adjust the data width, to load
control information (like microprograms) and so on. Assigning a resource means to incorporate it into
the administration of the selected resources so that it can be accessed by subsequent operators under
ordinal number or by addressing.

Resource type identifiers
For conventional (generic) resources, the resource type identifier is the appropriate type designator (as
given, for example, in the particular reference manual). Special resources are designated by their
particular symbolic name. Generally, Internet addresses and the like can also be used as identifiers.

Enumeration of resources
The requested resources are enumerated consecutively. Subsequent operators then refer to the selected
resources by those ordinal numbers (or by the assigned symbolic names).

THE REAL COMPUTER ARCHITECTURE – PRELIMINARY DESCRIPTION 29

2. Establish concatenations between resources: c-operator

c (list of concatenations)

c (1st source resource . 1st result => 1st destination resources . 1st parameter, 2nd source resource
. 2nd result => 2nd destination resource . 2nd parameter and so on)

Concatenation means to connect an output (result parameter) of the source resource with an input
(operand parameter) of the destination resource.

The c-operator loads concatenation control information (like address pointers) into the resources1). In
some implementations the operator will initiate the setup or programming of appropriate physical
connections (for example, within a switch fabric or an FPGA). If concatenation is exploited to the
extreme, the concatenated resources constitute a structure which corresponds to the dataflow graph
of the application problem.

Input concatenation
When supported appropriately, it is possible to concatenate inputs with one another (input
concatenation). Such a concatenation corresponds to connecting corresponding inputs in parallel.
Application: for supplying simultaneously parameters to several resources.

3. Feed resources with operands (parameter passing): p-operator

p (source-to-destination list). Source are variables in system memory or the like, destinations are
parameters of resources.

p (1st variable => resource . parameter, 2nd variable => resource . parameter and so on)

The p-operator moves the specified variables (for example, from system memory or an I/O address
space) into the specified operand parameter positions of the specified resources. The variables are
designated by names, ordinal numbers or addresses.

In resources that support concatenation appropriately, p-operators can also initiate the execution of
operations (processing begins when all operands are valid).

4. Initiate the information processing operations: y-operator

y (list of resources)

y (1st resource, 2nd resource and so on)

A y-operator initiates the execution of operations in the specified resources. What the respective
resources will do, depends on directly from the type of resource (when it can perform only a single
function) or on parameters (function codes) that have to be set beforehand (for example, by means of
s-operators or p-operators).

1): The resources are to be concatenated before the corresponding operations are initiated (y-operator).

THE REAL COMPUTER ARCHITECTURE – PRELIMINARY DESCRIPTION 30

An alternative method of operation initiation – without a y-operator – can be applied when the
resource supports concatenation. The execution of an operation will be initiated if all required
operands are valid. Valid operands can be supplied by means of p-operators or l-operators or by
concatenation.

Contrary to conventional instruction sets, the selection of the operation to be executed (s-operator) has
been separated from the initiation of the operation (y-operator or concatenation). Hence the resources
know in advance for which purpose the operands are destined. The initiator code (within y-operators)
is typically shorter than a conventional operation code. This avoids instruction traffic during execution
and can be an advantage if more than one function is to be initiated (appropriately formatted y-
operators can initiate more operations simultaneously than conventional instructions of same length).

5. Move data between resources: l-operator

l (source-to-destination list). Sources and destionations are parameters of resources.

l (1st source resource . 1st result => 1st destination resource . 1st parameter, 2nd source resource
. 2nd result => 2nd destination resource . 2nd parameter and so on)

The l-operator moves parameters between the specified resources (from the output (result parameter)
of the source resource to the input (operand parameter) of the destination resource, respectively).

In resources that support concatenation appropriately, l-operators can also initiate the execution of
operations (processing begins when all operands are valid).

6. Assign results: a-operator

a (source-to-destination list). Sources are parameters of resources, destinations are variables in
system memory or the like.

a (1st resource . 1st result => 1st result variable, 2nd resource . 2nd result =>2nd result variable and
so on)

The a-operator moves the contents of the specified result parameter positions of the specified resources
to the specified variables (for example, in system memory or in an I/O address space). The variables
are designated by names, ordinal numbers or addresses.

7. Disconnect concatenations: d-operator

d (list of concatenations)

d (1st source resource . 1st result => 1st destination resource . 1st parameter, 2nd source resource
. 2nd result => 2nd destination resource . 2nd parameter and so on)

The d-operator disconnects existing concatenations. In some implementations (for example, in FPGAs)
it can cause the corresponding physical connections to be changed or cut off (by reprogramming).
Disconnected resources can be used separately or can be concatenated again.

THE REAL COMPUTER ARCHITECTURE – PRELIMINARY DESCRIPTION 31

8. Return resources to the resource pool: r-operator

r (resource list)

r (1st resource, 2nd resource and so on)

The specified resources are returned to the resource pool. They are therefore available to be used for
other processing tasks.

2.4 Basic Examples

The following example illustrates how a programming intention can be implemented.

• The programming intention: to compute X := (A + B) • (C + D).
• Available resource types: ADD, MULT.

Fig. 2.5 illustrates the corresponding resource configuration comprising two adders (ADD) and a
multiplier (MULT). The ordinal numbers of the resources: first adder = 1, second adder = 2, multiplier
= 3. The ordinal numbers of the parameters of a resource: inputs (operands) = 1 and 2, result = 3.

Fig. 2.5 A resource configuration to compute X := (A + B) • (C + D).

The notation at full length (each step individually):

s (ADD)
s (ADD)
s (MULT)
p (A => 1.1)
p (B => 1.2)
p (C => 2.1)
p (D => 2.2)
y (1)
y (2)
l (1.3) => 3.1)
l (2.3 => 3.2)
r (1,2)
y (3)
a (3.3 => X)
r (3)

THE REAL COMPUTER ARCHITECTURE – PRELIMINARY DESCRIPTION 32

An abbreviated notation:

s (ADD, ADD, MULT)
p (A => 1.1, B => 1.2, C => 2.1, D => 2.2)
y (1, 2)
l (1.3 => 3.1, 2.3 => 3.2)
r (1, 2)
y (3)
a (3.3 => X)
r (3)

The resources connected according to the data flow (concatenation; refer to fig. 2.3):

s (ADD, ADD, MULT)
c (1.3 => 3.1, 2.3 => 3.2)
p (A => 1.1, B => 1.2, C => 2.1, D => 2.2)
y (1, 2, 3) -- begin of processing in the concatenated resources
a (3.3 => X)
r (1, 2, 3)

The y-operator is not needed when the resources support an appropriate advanced concatenation mode.

2.5 Some additional operators

1. Select a resource and assign a particular ordinal number: s_a-operator

s_a (list of pairs resource type identifier => resource ordinal)

s_a (1st resource type => 1st resource ordinal, 2nd resource type => 2nd resource ordinal and so on)

This variant of the s-operators assigns particular ordinal numbers to the requested resources.
Depending on the implementation, similar operators can be provided to assign addresses in a resource
address space instead of the ordinal numbers.

2. Load immediate values (literals) into resources: p_imm-operator

p_imm (list of pairs literal => destination). The destinations are parameters of resources.

p (1st literal => resource . parameter, 2nd literal => resource . parameter and so on)

The p_imm-operator moves immediate values (literals) into the specified operand parameter positions
of the specified resources.

In resources that support concatenation appropriately, p_imm-operators can also initiate the execution
of operations (processing begins when all operands are valid).

THE REAL COMPUTER ARCHITECTURE – PRELIMINARY DESCRIPTION 33

3. Initiate selected functions: y_f-operator

y_f (list of pairs resource . function code)

y_f (1st resource . 1st function code, 2nd resource . 2nd function code and so on)

A y_f-operator initiates the specified functions in the specified resources.

This variant contradicts the principle of encoding in the operators only the most basic processing steps
but not concrete machine operations. It is some kind of stopgap minimalist solution (suitable, for
example, for small FPGAs, microcontrollers and the like).

4. Provide hints to support speculative activities: h-operator
Hints (h-operators) can cause variables or program pieces to be loaded speculatively into cache
memories so that, when required, they are already available1). Additional h-operators can be provided
in order to indicate future demand in regard to certain resource types or certain configurations of
resources. Such hints can be used, for example, to select such resources out of the resource pool which
are, in regard to a subsequent concatenation, conveniently located on the integrated circuit.

5. Provide information for compiling and other activities of program generation: m-operator
Meta-language operators (m-operators) concern the setup of resource configurations, the conditional
execution of ReAl programs and the like. Such operators are similar to the pre-processor and compiler
directives of conventional programming languages. However, they can become active not only at
compile time but also at run time. A typical application: as a function of which resource types are
available, one of several alternative branches of a ReAl program is selected in order to execute a
certain programming task. Conventional conditional branches depend on processing results, operand
values and so on. Meta-language caused branching depends, for example, on the type and number of
available resources. The m-operators can access and change the contents of the table structures of
resource administration.

6. Auxiliary and aministrative functions: u-operator
All those functions that are required during program execution but cannot be encoded with operators
s, c, p, y, l, a, d, r, h, m are encoded with u-operators (in other words, u-operators are some kind of
stopgap provision).

Implementation of h-, m- and u-operators
The functions that are encoded with h-, m-, and u-operators can be provided by means that are outside
of the resource pool. This can be, for example, a conventional general-purpose computer that
administers and controls the pool of processing resources. Appropriate functional units are generally
referred to as platforms.

Alternatively, it is possible to specifically provide for many of these functions additional resources or
to configure, based on already present resources, corresponding resource arrangements ad hoc, for
example, resources that fill speculatively cache memories, reserve other resources, or administer

1): The principle of filling caches speculatively is well known and implemented in some high-performance
processors. Therefore, it must not be described in detail.

THE REAL COMPUTER ARCHITECTURE – PRELIMINARY DESCRIPTION 34

resource tables. Basically, the platform outside of the resource pool can be restricted to the most
elementary functions of instruction fetch, initialization and the like. All other functions can be
implemented by basic ReAl operators employing a sufficiently equipped resource pool. Therefore, a
more precise description of the h- and m-operators is not required here. Some u-operators will be
explained in more detail when necessary.

2.6 Operators and Instructions

Operators describe the basic steps of information processing. Machine-independent ReAl programs
are sequences of operators. To be stored and executed on ReAl machines, operators have to be
encoded. There are several alternatives:

• One machine instruction corresponds to one operator.
• One operator requires more than one machine instruction. An instruction encodes only an

elementary processing step (for example, loading of a parameter address). The functions of the
ReAl operators are emulated with sequences of corresponding instructions (resembling a
conventional vertical microprogram control).

• One instruction contains more than one operator (resembling the conventional VLIW instructions).
• Control words that contain individual control bits as well as literal fields, address fields, and

control fields. Such control words serve primarily for supplying with parameters, activating and
so on a large number of resources at once (resembling a conventional horizontal microprogram
control).

• Instructions that are similar to the machine instructions of conventional architectures.
• The operators are converted into sequences of conventional machine instructions or corresponding

function calls (for example, by means of compiling).

2.7 ReAl and Conventional Programming Languages

Fundamentally, ReAl programs can be likened to manufacturing or machining instructions1) – ReAl
programming means just to plan ahead. Which manufacturing steps are to be executed? Which tools
and machines are necessary? Which part has to be supplied to which machine in the course of time?
No engineer would begin designing cars, ships and so on writing down instructions of this kind.
Analogously, a programmer will not use a ReAl text code for jotting down his programming ideas.

Instead, ReAl programs will be generated automatically from source programs written in higher-level
languages. Machine-independent ReAl codes can be seen as intermediate languages, similar to the
well-known Java byte code (table 2.1). However, the goal is not code compactness but to describe
precisely the inherent parallelism and essential intricacies of program operation. In this respect, ReAl
may be better compared to Postscript than to Java.

1): Something like "To manufacture this gearbox, we will need three lathes, five milling machines and so
on. Part No. 33 will be machined on lathe No. 2 and then finished on grinding machine No. 6."

THE REAL COMPUTER ARCHITECTURE – PRELIMINARY DESCRIPTION 35

Some variants related to compiling and program execution:

• Programs written in a conventional programming language will be compiled into machine-
independent ReAl code.

• Programs written in a new ("ReAl-aware") programming language will be compiled into machine-
independent ReAl code.

• The machine-independent ReAl code will be executed by an appropriate emulator.
• The machine-independent ReAl code will be compiled into the machine code of a conventional

processor (in other words, the ReAl code is used merely to detect the inherent parallelism).
• The machine-independent ReAl code will be compiled into ReAl machine code.

Java, JVM ReAl

• Code compactness (bytecode)
• Developed for small programs

(applets)
• Executable on thin machines
• Programs to be downloaded via

internet
• JVM is a conventional stack

machine, hence its operations are
inherently sequential

• JVM bytecode describes one
operation at on time, hence inherent
parallelism is to be detected during
runtime

• To make best possible use of hardware
• Developed for large and computing-intensive programs

(graphics, equation solving, simulation, data bases, neural
networks, AI)

• There will always be enough hardware. Memory capacity
and code size are irrelevant

• Executable on machines which can be built with future IC
technology (dozens or even hundreds of operation units on
one integrated circuit)

• ReAl code describes completely the inherent parallelism
of program operation

• Creation of virtual special processors which correspond to
the dataflow graph of the application problem

• Inherent parallelism will be detected not during runtime
but in statu nascendi (in other words, by examination of
the programming intentions)

• A sufficiently standardized ReAl instruction set is a
unified machine language, which can describe hardware
as well as software

Table 2.1 Java Virtual Machine (JVM) vs. ReAl

2.8 Processing Resources

Processing resources comprise memory means for the parameters (operands and results) and
appropriate processing circuitry. They differ primarily in:

• The number of operands and results.
• The type of data structures of the operands and results.
• The supported operations.
• The processing width (the number of bits to be processed in parallel).
• The method of parameter passing (for example, by value or by reference).
• The concatenation support (principles of operation and supported parameters).
• The relation to the processing state (whether the resources are stateless or parameters are included

in the processing state or program context, respectively).
• The auxiliary functions (range checking, measuring of the frequency of utilization and so on).

THE REAL COMPUTER ARCHITECTURE – PRELIMINARY DESCRIPTION 36

2.8.1 Basic Resources

Fig. 2.6 illustrates a simple resource that executes only one particular type of information processing
operation (operation fixed, processing width (number of bits) fixed). The memory means for operands
and results are typically implemented as registers. The parameters (operands and results) are passed
to by value. The most basic resources support no concatenation. Operators that can be applied are:
p, y, a, l.

Fig. 2.6 A basic processing resource.

When the parameter passing is to be supported by reference, the corresponding address registers and
access paths to the memory are to be provided. There are two principal alternatives to implement
parameter passing by reference:

• The circuitry for addressing and data transport is incorporated into the processing resources (fig.
2.7).

• The means for addressing and data transport are provided as separate addressing resources (fig.
2.8).

Appropriate circuitry comprises addressing provisions and means for memory access control.
Addressing provisions can be implemented according to well-known principles, for example:

• As address registers.
• As address registers with counting operation (increment, decrement).
• As address calculation units (base + displacement or the like).
• As iterator circuitry (for example, for consecutively accessing variables in typical FOR loops).

THE REAL COMPUTER ARCHITECTURE – PRELIMINARY DESCRIPTION 37

How the memory access control means are implemented depends on the respective memory interface
(bus, switching hubs or the like). Some variants have also means for data buffering (like buffer
registers or FIFOs).

2.8.2 Data addressing

The processing resources need access to the data stored in memory. Operands are to be fetched and
results are to be stored. Principally, there are two ways of implementing these functions:

• Dedicated addressing resources are concatenated to processing resources (fig. 2.7).
• Appropriate addressing and memory access capabilities are provided within the processing

resources (fig. 2.8).

Fig. 2.7 Addressing resources concatenated to a processing resource. 1 - operand addressing
resources; 2 - processing resource; 3 - result addressing resource; 4 - address parameters

delivered by p-operators, l-operators or preceding concatenations; 5 - adressing resources deliver
operands fetched from memory; 6 - adressing resource stores result into memory.

Basic addressing resources have a memory address and a data word as parameters. The address
parameter is held in an address register, the data parameter in a data register. The address is an
operand. In case of read operations, the data parameter is a result (to be delivered to the processing
resource). In case of write operations, the data parameter is an operand (to be passed from the
processing resource). Usually, addressing and processing resources are not hard wired together.
Instead, the resources will be concatenated on the fly (c-operators). The simple concatenated
configuration, depicted in fig. 2.7, operates as follows:

THE REAL COMPUTER ARCHITECTURE – PRELIMINARY DESCRIPTION 38

• Operand and result addresses are loaded into the address registers of the addressing resources 1 (p-
operators or l-operators or concatenation).

• Y-operators or the arriving of address parameters (caused by concatenation) activate the operand
addressing resources 1. They initiate read accesses to memory.

• Once the data registers (OP 1 DATA, OP 2 DATA) within the operand addressing resources 1 have
received the memory data, the concatenation to the operand registers within the processing
resource becomes effective. The operand values are passed to the processing resource 2. As soon
as the last operand value has been received, the processing resource 2 initiates its processing
operations.

• When processing resource 2 has completed its operations, the concatenation of its result register
to the data register of result addressing resource 3 (RES DATA) becomes effective.

• The delivery of the result causes the result addressing resource 3 to initiate a write access in order
to transfer the data register contents into the memory.

Fig. 2.8 A basic processing resource supporting parameter passing by reference. 1, 2 - operand
address registers; 3 - result adress register; 4 - sequencer.

According to fig. 2.8, the addressing and memory access provisions can be built into the processing
resources. Such a resource operates as follows:

• The operand addresses are written into the operand address registers 1 and 2, the result address into
result address register 3 (by means of p-operators or l-operators or concatenation).

• Y-operators or the arriving of address parameters (caused by concatenation) causing the
sequencer 4 to be activated, thus initiating the processing operations.

• To fetch the operands, the sequencer 4 launches two read access cycles, using the operand address
registers 1 and 2, respectively.

• The operands read are entered into the operand registers of the resource.
• The result is computed.
• The sequencer 4 initiates a write access to the memory, using result address register 3.

THE REAL COMPUTER ARCHITECTURE – PRELIMINARY DESCRIPTION 39

Addressing means can be extended beyond simple address registers. Here are a few examples:

• Address registers with increment/decrement capabilities.
• Address calculation provisions (for example, according to the principle base + displacement).
• Iterator hardware which supports the address calculation within the loop body as well as loop

control.

The concatenation of addressing and processing resources leads to deeper pipelines (there are more
register stages to be passed), but provides for nearly unlimited flexibility (for example, the body of an
innermost loop may be implemented by resources concatenated according to the data flow,
supplemented by address iterator resources to fetch the operands and to store away the results). It is
even possible to use the same kind of resource for processing as well as for addressing (such a resource
may be an appropriately enhanced universal arithmetic-logic unit).

Basic addressing circuitry
Based on figs. 2.9 to 2.14, typical provisions for address calculation will be explained in more detail.
Such address calculation units may constitute the cores of dedicated addressing resources1) or may be
provided within processing resources.

Fig. 2.9 shows an addressing circuitry that acts as an address adder and forms a memory address
according to the principle base + displacement. It depends on the configuration of the entire system
whether this address addition is carried out in the processing or addressing resources or centrally on
the platform (in the latter case the resources receive address parameters that have been computed
beforehand by the platform). In a few applications it is even possible to operate with absolute
addresses (calculated at compilation time)2).

Fig. 2.9 Address calculation according to the principle base + displacement.

It is advantageous to support consecutive (sequential) addressing. For this purpose, the address
registers (compare figs. 2.7 and 2.8) can be laid out as address counters. After each access the address
is incremented by one (or according to the respective access width) so that data arranged consecutively
in memory can be accessed sequentially.

1): The address calculation core is to be supplemented by control, concatenation and interface circuitry.

2): Example: Embedded systems with ROM-resident programs.

THE REAL COMPUTER ARCHITECTURE – PRELIMINARY DESCRIPTION 40

In the address calculation unit shown in fig. 2.10, the address increment) is an additional parameter.
The memory address is calculated based on a base address, a displacement, and a distance value
(stride) D. The displacement will be modified after each access.

Fig. 2.10 Address calculation including an additional address increment parameter.

The following address calculations take place:

1. Memory address := base + displacement.

2. Displacement := displacement distance (autoincrement/autodecrement depending on the sign
of the distance value).

Access example: a two-dimensional array (matrix) of floating point numbers that are stored row by
row.

a) Access to sequential elements of a line: with distance (stride) = 1 (word addressing) or = length
of the floating point number in bytes (byte addressing).

b) Access to sequential elements of a column: with distance (stride) = column number (word
addressing) or column number • length of floating point number in bytes (byte addressing); the
respective value is to be set once before accessing.

Fig. 2.11 illustrates a modification of the address calculation unit according to fig. 2.10 that supports
accessing consecutive data structures of equal length based on index values (= ordinal number 0, 1,
2, 3 etc.). The current index value will be modified by adding or subtracting the distance value (stride)
after each access. The multiplier calculates the displacement address of the n-th element (n = 0, 1, 2,...)
of a one-dimensional array. In most performance-critical applications the element length will be a
power of two with an exponent being not very large (for example, the length is 2, 4, 8, or 16 bytes).
When only such access operations are to be supported, the multiplier can be a simple shifting circuitry
(multiplication by 2n corresponds to left-shifting by n bits).

THE REAL COMPUTER ARCHITECTURE – PRELIMINARY DESCRIPTION 41

Fig. 2.11 Address calculation unit supporting index (ordinal number) to address conversion.

Address calculations:

1. Memory address := base + (index • element length)

2. Index := index distance (autoincrement/autodecrement depending on the sign of the distance
value).

Access examples: a two-dimensional array (matrix) of floating point numbers that are stored row by
row. Byte addressing applies. The floating point numbers have a length of 8 bytes. Accordingly, the
element length ist is to be set to 8.

a) Access to consecutive elements of a row: with distance (stride) = 1.
b) Access to consecutive elements aof a column: with distance (stride) = the number of elements in

a row (this value is to be set once before access).

2.8.3 Supporting loops

Many sequential accesses are executed in program loops. When performing program loops, there is
the problem of recognizing when to exit the loop (loop termination). In general, the loop condition
is queried by a conditional branch. The usual loop constructs of conventional programming languages
can be supported also by dedicated resources.

Fig. 2.12 illustrates a resource configuration (in the following referred to as iterator) for supporting
typical FOR loops. Operands: initial value A, step width B, end value C. Results: the actual value of
the control variable X (in the following: loop value) as well as the ending condition (termination
condition). The initial value register A and an adder ADD are connected by means of a selector
upstream to the loop value register X; the adder ADD is connected to the step width register B and

THE REAL COMPUTER ARCHITECTURE – PRELIMINARY DESCRIPTION 42

the loop value register X is returned to the adder ADD. Moreover, a comparator CMP is connected
downstream to loop value register X. The comparator has arranged upstream thereof an end value
register C. The comparator output provides the ending condition. The loop value register X can be
used as a source of a memory address or the current control variable.

Fig. 2.12 An iterator resource to support typical FOR loops.

The described arrangement supports loops of the type FOR X := A TO C STEP B. It can be used, for
example, as follows:

1. concatenations are generated (c-operators), if necessary,
2. initial address, step width and end values are entered (p-operators, l-operators or concatenation),
3. the program loop is activated (by y-operator or as an effect of an input concatenation); the

sequence control is activated; in the first step the contents of the initial value register A is
transported through the selector into the loop value register X; in the following steps, the contents
of the step width register B is added to the contents of the loop value register X;

4. the contents of the loop value register X is compared to the contents of the end value register C;
the loop pass is repeated cyclically as long as C < X; when C = X, the last loop pass is completed
and the ending condition becomes effective.

The arrangement according to Fig. 2.12 can be operated during a single pass or continuous passes:

a) Single pass: each y-operator or input concatenation (for example, from the sequence control to the
iterator) initiates a loop pass. This causes the operators of the loop body to be carried out.

THE REAL COMPUTER ARCHITECTURE – PRELIMINARY DESCRIPTION 43

loop start:
y (operator)
-- loop body --
y (branch) -- continuation or return to loop start.

b) Continuous passes: a y-operator or the input concatenation initiates passing of the entire loop.
Upon continuation of the loop the output concatenation of the loop value register X becomes
effective (conditional concatenation), and at the termination of the loop the ending condition
becomes effective (for example, it can be concatenated to the platform). By means of the output
concatenation of the loop value register X the iterator resource triggers the subsequent processing
resources that carry out the functions of the loop body.

Multiple loop passes can be replaced by corresponding multiple parallel executions of the operations
of the loop body (loop unrolling). When the number of passes (1) is known from the beginning (at
compile time) and (2) is not too large, this does not present any particular problem for a system
configured according to the invention.

Example:
FOR n = 1 TO 20
-- loop body --
NEXT N

is processed in parallel (unrolled) in that the resource configuration required for implementing the loop
body is requested 20 times and supplied correspondingly with parameters.

When not enough resources are available, parallel processing is possible only in stages.

Example: in the expression
FOR n = 1 TO 20
-- loop body --
NEXT n

it is possible, for example, to support for parallel processing only four loop body functions (because
the number of utilizable processing resources is limited correspondingly). For this purpose, the loop
must be reconfigured:

FOR n = 1 TO 20 STEP 5
1st loop body # 2nd loop body # 3rd loop body # 4th loop body
NEXT n

The resource configuration of the loop body is requested four times; the loop is executed in five
passes.

When the number of loop passes is not known at the compiling time (example: FOR n = 1 TO x), this
simple type of unrolling is not possible. One solution is that a certain number of processing resources
are made available for parallel processing in general and that their utilization is controlled by
correspondingly designed iterator resources and memory access resources.

THE REAL COMPUTER ARCHITECTURE – PRELIMINARY DESCRIPTION 44

The number of parallel-supported processing resources is referred to in the following as degree of
parallelization P (P = 1: 1 resource, P = 2: 2 resources, etc.). The utilization is controlled usually by
the compiler. It assigns, for example, to a certain loop four processing resources (P = 4) and corrects
the step width accordingly:

FOR n = 1 TO x is changed to FOR n = 1 TO x STEP P.

Example:
FOR n = 1 TO 14 is changed with P = 4 to FOR n = 1 TO 14 STEP 4.

Values for n (each processing resource takes care of one of these values):
in the first pass: 1, 2, 3, 4
in the second pass: 5, 6, 7, 8
in the third pass: 9, 10, 11, 12
in the fourth pass: 13, 14

It is apparent that in the last pass not all four processing resources are busy. In order to recognize the
last pass, the actual value A is subtracted from the end value E: remainder value R = E – A. When the
remainder value R is smaller than the degree of parallelization (R < P), the loop end has been reached.
When R = 0, exit from the loop takes place. When R > 0, the last pass is carried out in which some
processing resources are not busy.

Fig. 2.13 shows an iterator resource that is modified relative to Fig. 2.12. In addition to the operand
registers A, B, C illustrated in Fig. 2.12, an additional operand register P is provided. Its content
indicates the degree of parallelization. Loop value register X and end value register C are connected
to a subtractor that has arranged downstream thereof an arithmetic comparator whose second input is
arranged downstream of the register P of the degree of parallelization.

Fig. 2.13 An iterator resource to support loop unrolling.

THE REAL COMPUTER ARCHITECTURE – PRELIMINARY DESCRIPTION 45

The following calculations take place:

1. the subtractor determines the actual remainder value = end value – loop value,
2. the arithmetic comparator recognizes the ending condition remainder value < degree of

parallelization; if this condition is met, it is necessary to deactivate in the last pass some of the
processing resources.

Because the activation and supply of the parallel-operating processing resources must be coordinated,
it is expedient to arrange all respective processing resources downstream of a single memory access
resource of a corresponding design. For example, a memory access resource has concatenated
downstream thereof four identical processing resources. The memory access resource, like the entire
memory subsystem, must be able to support the memory bandwidth that is required to supply the
parallel-operating processing resources with data and to transport the results.

Example: when four resources with access width of 64 bits are connected, the memory accesses are
carried out with an access width of 256 bits (or, for example, with 128 bits and twice the data rate).
Data buffers that collect accesses with different width and different addresses and convert them into
accesses with greater widths are contained in modern high-performance processors and in bus control
circuits (bridges, hubs).

Fig. 2.14 illustrates a memory access resource that contains an iterator 1 according to Fig. 2.13. The
iterator 1 provides the memory address. The memory interface comprises also the memory data buffer
2. The memory data buffer 2 is designed for a memory bandwidth which results from the memory
bandwidth of the individual processing resource multiplied by the degree of parallelization. In the
example, this bandwidth is ensured by a quadrupled access width (for the same data rate; for example,
256 bits for four processing resources with 64 bit data path). For each processing resource a data
buffer 3 and a concatenation control 4 are assigned to the memory data buffer 2.

A concatenation process is triggered when data are available (reading) or to be retrieved (writing). A
concatenation control 4 becomes effective only when its enable input (for example, E1) is active. The
enable inputs E1 to E4 are excited by a remainder value decoder 5 that is connected downstream of
the remainder value output of the iterator 1. The remainder value decoder 5 is a combinational circuit
that generates the enable signals E1 to E4 for the concatenation controls 58 (Table 1). If the loop pass
is not the last, all four concatenation controls 4 become active. In the last loop pass, the activation is
based on the remainder value.

Table 1

Remainder value E1 E2 E3 E4

1 1 0 0 0

2 1 1 0 0

3 1 1 1 0

> 3 1 1 1 1

THE REAL COMPUTER ARCHITECTURE – PRELIMINARY DESCRIPTION 46

Fig. 2.14 Memory access resource with an iterator to support unrolled loops.

2.8.4 Processing resources

In the following, with the aid of Figs. 2.15 to 2.23, further details of the configurations of typical
processing resources will be explained in more detail. In this context, it will be explained how
functions are selected and the processing width (number of bits) is controlled. There are processing
resources with fixed functions and processing resources that can perform one of several information
processing operations. For function selection, additional input parameters are provided. This enables
also to select functions depending on previous processing results. In this regard, it is expedient to have
a function code without effect (no operation, NOP). When such a function has been entered, the
resource will change nothing. The processing state (program context) remains unaltered. Output
concatenations are not initiated. In this way, it is possible to circumvent the resource depending on
previous results or certain processing states (conditional operation).

Fig. 2.15 illustrates a processing resource that has a function code register FC as an additional input
parameter. This feature can be used to set up a certain resource configuration or to change resource
operation on the fly. The function code can be treated like every other parameter, i.e., can be loaded
by p-operators, l-operators or concatenation. An additional possibility is to let the parameter set by s-
operators. This embodiment allows to provide reconfigurable and multi-purpose hardware resources,
which are configured to the particular function requested. E.g, the resources are general-puropse
arithmetic-logic units (ALUs), and s-operators will request three adders for 16-bit binary numbers, one
AND of 8 bits, and five identity comparators of 12 bits. Than those s-operators will set the FC
prameters of the requested resources appropriately, this way morphing general-purpose resources into
single-purpose functional units.

THE REAL COMPUTER ARCHITECTURE – PRELIMINARY DESCRIPTION 47

Fig. 2.15 A processing resource with selectable operations.

There are resources with fixed and with changeable processing width (operand size, number of bits).
Fig. 2.16 illustrates a simple resource modified in comparison to Fig. 2.15 and provided with an
additional processing width register (BITS). The width set therein is valid for all parameters.
Operands are processed and results are delivered according to the entered width.

The treatment of excess bit positions depends on the configuration of the resources and the platform
(in regard to the memory). Typical variants:

a) filling with zeroes (zero extension),
b) filling with the content of the highest-order bit position according to the current processing width

(sign extension),
c) ignoring excess bits and inserting short operands right-aligned (the remaining content remains

unaltered).

For the purpose of processing, the operands are typically extended to the maximum processing width
of the processing circuit (zero extension, sign extension etc.). The details of operand extension for
numerical and non-numerical elementary operations are within the general knowledge.

Fig. 2.17 shows a processing resource that allows to individually set the width of different parameters.
In the example, two operand size registers BITS_1, BITS_2 are provided, controlling operand
extension circuits 1, 2, that are inserted into the signal paths between the operand registers and the
processing circuits. They act in such a way that they supply to the actual processing circuits operands
that are extended to the respective maximum processing width.

THE REAL COMPUTER ARCHITECTURE – PRELIMINARY DESCRIPTION 48

Fig. 2.16 A processing resource with selectable operations and number of bits (operand size,
processing width).

Fig. 2.17 A processing resource, which allows to individually set the width of the operand
parameters.

Processing widths not only can be set but also have to be queried sometimes. The resources and the
platform must know of how many valid bits the individual parameters are composed. For this purpose,
the following principles can be used:

1. The actual access width is described in corresponding tables. This solution has the disadvantage
that at run time a table lookup must be executed before carrying out a corresponding operand
access.

THE REAL COMPUTER ARCHITECTURE – PRELIMINARY DESCRIPTION 49

2. The machine code comprises information in regard to the access width. This solution is similar
to conventional instruction set architectures, providing separate instructions to move bytes, words
and so on. For reasons of cost, only a few access widths can be supported. Moreover, the
respective processing width must be fixed at compile time..

3. The memory means in the resources that indicate the processing width (processing width register,
TAG bits) are designed to be queried. This information is transferred together with the data bits,
respectively, or can be queried from other resources. For this purpose, interfaces between the
resources (bus systems, point-to-point interfaces or the like) are appropriately supplemented.

Fig. 2,18 shows a processing resource whose parameter registers have been extended by TAG bits that
indicate the respective access width. The operand bus and the result bus are supplemented by
additional lines (TAG bus). During normal operation, the TAG bits can only be read out. Writing via
the TAG bus takes place only in order to set up the resources, for example, when executing s-
operators.

Fig. 2.18 Processing resource whose parameter registers have been extended by TAG bits,
indicating the respective access width.

The resources can be designed for various forms of parameter transfer. The most basic mode is to
transfer the value of the parameter (value transfer, parameter passing by value). Occasionally, it is
advantageous to enhance processing resources by addressing means, so that the resource can address
parameters itself (parameter passing by reference), without the need to attach special addressing
resources. Fig. 2.19 illustrates a processing resource which allows to select between both methods of
parameter transfer (by value or by reference). The resource is connected to a universal memory bus
and to signal lines (not shown) for value transfer (for example, via an operand bus and a result bus).
To some of the parameter registers 1, only values can be transferred. With regard to the operand
registers 2 and the result registers 3, both transfer modes are supported. In order to address the
parameters in the memory, for each of those parameters, an address generator 4 is provided. In the
simplest case, this is a loadable address counter.

THE REAL COMPUTER ARCHITECTURE – PRELIMINARY DESCRIPTION 50

Fig. 2.19 This processing resource supports parameter transfer by value as well as by reference.

The transfer mode (by value or by reference) can be encoded within the function code (register FC).
A further selection method could be to make the transfer method dependent by the last transfer before
initiation of operation (y-operator or concatenation). Example 1: if a parameter has been entered into
the first of the address generators 4, transfer by reference will be established for the first operand.
Example 2: a p-operator that enters the second operand directly causes the second of the address
generators 4 to be deactivated.

Fig. 2.20 shows a processing resource that is designed for parameter transfer by reference. In addition
to the operands and the result, the function code can be addressed, too. Before activating the resource,
the address of the first function code must be brought into the function code address register 1 (p-
operator, l-operator, concatenation). When the resource is activated (for example, by a y-operator), the
sequence control 2 will initiate a first a memory access that enters the actual function code into the
function code register 3. In enhanced resources of this type, the function code address register 1 is an
address counter. Having executed the first function, the sequence control 3 will fetch the next function
code. This way, the resource can execute operation sequences (i.e. program pieces) autonomously.
Essentially, this is a program within a program. It will be terminated by appropriate function codes.

The autonomous sequencing of function codes can be further enhanced to true instruction processing.
Fig. 2.21 illustrates, how conditional branching can be supported. The function code address register
1 serves as an instruction counter. To facilitate branching, contents of the function code register 3 can
be entered into the instruction counter 1. The sequence control 2 is preferably some kind of
microprogram control based on an elementary set of microcodes. Fig. 2.21 shows further, that parts
of the result could also contribute to the next function code (instruction) address, allowing for
functional branching (multiway branches) depending on certain results (this is a well-known principle
of microprogram control). Such resources can execute complex functions by means of comparatively
simple hardware. A typical example is a resource to compute trigonometric functions. Another realm
of application is the autonomous execution of elementary subroutines or innermost loops (i.e.,
subroutines that contain no additional subroutine calls and loops that contain no additional loops). In

THE REAL COMPUTER ARCHITECTURE – PRELIMINARY DESCRIPTION 51

contrast to a fully-fledged processor core, such resources require considerably fewer gates and flip-
flops. Applying principles of microprogramming allows to control the operations up to the machine
clock cycle and to avoid the overhead, which typically occurs when conventional processors and
special-purpose circuitry collaborate.

Fig. 2.20 This processing resource supports parameter transfer by reference. Even the function
code can be addressed.

THE REAL COMPUTER ARCHITECTURE – PRELIMINARY DESCRIPTION 52

Fig. 2.21 This processing resource contains an autonomus microprogram control.

